Отзыв ведущей организации
на диссертационную работу Кабановой Марии Валерьевны «Синтез замещённых индолов на основе 5-нитро-4-фенилптолонитрилов», представленную на соискание ученой степени кандидата химических наук по специальности 02.00.03 - Органическая химия.

Диссертационная работа М.В. Кабановой посвящена синтезу новых замещённых индолов с различными функциональными группами и установлению взаимосвязи структура-свойства в полученных соединениях. В качестве ключевой реакции в синтезе указанных соединений автор использует реакцию восстановительной циклизации 5-нитро-4-феноксикарбоновой кислоты.

Актуальность работы Кабановой М.В. не вызывает сомнений, т.к. полученные автором целевые соединения представляют значительный интерес в качестве потенциальных лекарственных препаратов для лечения нейродегенеративных заболеваний. Обнаруженная фармакологическая активность ряда впервые полученных соединений достигается благодаря наличию в молекуле индоля двух α-положенных цианогрупп (или имидного фрагмента) и заместителей в пиридиновом цикле, что, в совокупности, позволяет им выступать в качестве мощных, селективных ингибиторов моноаминоксидаз А (МАО-А) и Б (МАО-Б).

Потенциально индолы с различными функциональными группами представляют интерес в качестве структур, входящих в состав полимерных
мицелл, дисперсий, пленок и покрытий. Такой подход может значительно расширить возможности для их практического использования.

Диссертация построена традиционно и состоит из введения, литературного обзора, химической и экспериментальной частей, заключения, списка литературы из 159 наименований.

Во введении автором обосновывается актуальность выбранного направления исследований и формулируется основная цель работы.

В диссертационной работе Кабановой М.В. изложению и обсуждению полученных экспериментальных данных предшествует детальный и исчерпывающий литературный обзор, наглядно демонстрирующий имеющиеся в печати основные результаты исследований в химии индолов, и позволяющий понять какие задачи стояли перед соискателем в контексте существующих научных и практических проблем указанной области органической химии. Большое внимание в этом разделе автор уделил анализу информации о способах получения N-гидроксииндолов, 3-замещённых индолов (3-галоген-, 3-формил-, 3-ацил-) и практическому использованию соединений индольного ряда.

В химической части автором описаны и обсуждены основные результаты проведенных исследований по теме работы. В качестве исходных субстратов для последующего получения большого числа разнообразных гетероциклических соединений диссертантом использованы 5-нитро-4-фенацилфталонитрилы, синтез которых был разработан ранее на кафедре ОФХ ЯГТУ. Такой выбор является существенным достоинством данной работы, т.к. при необходимости возможно сравнительно быстро и легко нарабатывать необходимое количество нужных соединений для их дальнейшего изучения и использования.

В первом разделе химической части соискатель приводит и обсуждает результаты исследований и разработки методов синтеза 3-замешённых индолов. Раздел поделен на пять подразделов, первый из которых посвящен синтезу 3-хлорзаменённых индол-5,6-дикарбонитрилов. Автор подробно описывает отличительные особенности протекания известных реакций на новых
объектах, предлагает механизм взаимодействия пятихлористого фосфора и гидроксингидрола в растворе ДМФА и доказывает его, определяя строение промежуточного N-хлориндола. В диссертации показано влияние условий реакции и природы используемых растворителей на выход и чистоту целевых продуктов. Полученные автором экспериментальные данные позволили определить наилучшие условия синтеза неописанных в литературе 2-арил-3-хлориндол-5,6-дикарбонитрилов. Совокупность данных ИК-, ЯМР 1H-, 13С-спектроскопий, масс-спектрометрии высокого разрешения, а также РСА дает полную информацию для доказательства структуры синтезированных соединений.

Интересные результаты представлены соискателем в следующем разделе работы, в котором описан синтез 1-метокси-3-формилиндол-5,6-дикарбонитрилов в присутствии реагента Вильсмейера. Показано, что в отличие от N-гидроксигруппы N-метоксигруппа в 2-арилиндол-5,6-дикарбонитрилах более устойчива в присутствии POCl_3 или PCl_5. На основе полученных 3-формилзамещенных индолов диссертантом были синтезированы индоль с гидроксиметильной группой, являющиеся структурными аналогами природного БАВ — индоль-3-карбинола.

Логическим продолжением работы явилось изучение реакции монобромирования индоль-5,6-дикарбонитрилов. Показано, что в этом случае особенностью реакции является сохранение N-гидроксигруппы в субстрате. Использование в этой реакци N-бромсульфаниламиды в качестве бромирующего агента и катализитических количеств пероксида водорода — безусловно интересная идея автора.

Также в данном разделе Кабановой М. В. предложен новый подход к синтезу 3-ациллиндонов, основанный на восстановительной циклизации формильных производных, полученных по реакции Вильсмейера-Хаака.

Во втором разделе диссертации соискателем представлены основные результаты, полученные при разработке методов синтеза индолов на основе продуктов кислотного гидролиза 4-нитро-5-фенацилфталонитрилов. В первых трех подразделах приводятся данные по исследованию реакции гидроли-
за цианогрупп под действием ПФК с получением имидов и их последующего восстановления двухвалентным оловом до индолов, а так же дальнейшее метилирование до метиловых эфиров. Автор приводит спектральные данные, доказывающие, что в первую очередь метилирование протекало по OH- группе, а только затем, в более жестких условиях, по NH-группе.

В следующем подразделе диссертант рассматривает синтез 5-нитро-4-фенацилbenзол-1,2-дикarbonовых кислот, основанный на кислотном гидролизе цианогрупп в 5-нитро-4-фенацилфталонитрилах под действием серной кислоты по известному методу. Далее автор проводит восстановление нитрогруппы в полученных 5-нитро-4-фенацилbenзол-1,2-дикarbonовых кислотах до соответствующих замещенных индоль-5.6-дикarbonовых кислот. В заключении этого раздела соискатель предлагает способ получения новых пирроло[3.4-f]индоль-5,7(1H,6H)-дионов с широким варьированием заместителей в молекуле.

Третий раздел посвящен практической значимости синтезированных соединений. Автором приводятся основные данные испытаний синтезированных во время работы структур, полученные в результате определения их ингибитирующей способности на моноаминооксидазы А и Б человека, проведенные в «Centre of Excellence for Pharmaceutical Sciences», North-West University, Potchefstroom, South Africa. Полученные данные убедительно свидетельствуют о практической ценности синтезированных соискателем соединений, так как большинство из них проявило высокую активность и селективность при ингибитировании в субмикромолярных концентрациях MAO-A и MAO-B.

В экспериментальной части представлены данные об используемых исходных реактивах и методах их очистки, идентификации и анализа полученных промежуточных и целевых продуктов. Соискателем приведены подробные методики синтеза указанных в работе новых структур. Рассмотрение этого раздела диссертации позволяет сделать однозначный вывод о достоверности полученных результатов. Можно утверждать, что приведенные методики вполне воспроизводимы, а применение в комплексе современных ин-
струментальных методов анализа масс-спектрометрии, ИК и ЯМР (\(^1\)Н, \(^{13}\)С, NOESY, HSQC, HMBC) спектроскопий, PCA отражает высокий научный и хороший методический уровень работы и однозначно свидетельствует о доказанной структуре синтезированных продуктов.

Сделанное автором по итогам работы заключение вполне обосновано и убедительно, поэтому работа может быть оценена как завершенное научное исследование, в котором соискателем решены все поставленные задачи.

Три патента РФ и три статьи по теме диссертации в журналах, рекомендованных ВАК, подтверждают приоритет автора и новизну полученных результатов.

Оформление диссертации и автореферата соответствует требованиям ГОСТ Р 7.0.11 «Диссертация и автореферат диссертации».

По работе имеются следующие замечания:

1. Автор, описывая в диссертации получение 3-гироксиметилиндолов 2.13(а-с), не уделяет необходимого внимания поиску наилучших условий синтеза и увеличения выхода целевых соединений. Чем, например, соискатель может объяснить невысокие 37 - 57 %-ные выходы целевых продуктов?

2. В работе автор не достаточно четко обосновал выбор указанного метода бромирования замещённых индолов, и слишком много внимания уделил доказательству строения полученных 3-бромзамещенных индол-5,6-дикарбонитрилов.

3. В работе присутствуют ошибки в номенклатуре органических соединений. Не для всех веществ приставки расположены в алфавитном порядке (стр. 113, 123, 127).

Однако, указанные замечания не снижают значимости и ценности работы и поэтому на основании изложенного считаем, что диссертационная работа Кабановой Марии Валерьевны на тему «Синтез замещенных индолов на основе 5-нитро-4-фенацилфталонитрилов», представленная на соискание ученой степени кандидата химических наук по специальности 02.00.03 — Органическая химия, является научно-квалификационной работой, в которой решается одна из основных задач органической химии — направленный син-
тез новых соединений с полезными свойствами. Результаты исследований, проведённых Кabanовой М.В. являются существенным вкладом в химию индолов, а сама работа представляет собой завершенное научное исследование, выполненное на высоком теоретическом уровне, на базе большого экспериментального материала, качественно оформлена и производит благоприятное впечатление. Достоверность и надежность полученных результатов не вызывают сомнений, а их научная новизна и практическая значимость очевидны.

Содержание диссертации соответствует п. 9 «Положения о присуждении ученых степеней», утвержденного постановлением Правительства РФ № 842 от 24 сентября 2013 г., и паспорту специальности 02.00.03 – Органическая химия по областям исследования: п.1 Выделение и очистка новых соединений; п.3 Развитие рациональных путей синтеза сложных молекул; п.7. Выявление закономерностей типа «структура – свойство». По характеру постановки задачи, используемым подходам к экспериментальным исследованиям и анализу результатов работа отвечает отрасли наук «химические», а её автор Кabanова Мария Валерьевна заслуживает присуждения ученой степени кандидата химических наук по специальности 02.00.03 - органическая химия

Отзыв обсуждён на заседании лаборатории гетероцепных полимеров ИНЭОС РАН им. А.Н. Несмеянова 8 апреля 2016 г.

Зав. лабораторией ГЦП, доктор химических наук, по специальности 02.00.06, (Высокомолекулярные соединения)

ФГБУН Институт элементоорганических соединений им. А.Н. Несмеянова
Российской академии наук
119991, ГСП-1, Москва, В-334,
ул. Вавилова, 28.
tел. 8(499) 1359212
e-mail: vasnev@ineos.ac.ru

Подпись д.х.н. В.А. Васкелов
Учёный секретарь ИНЭОС
им. А.Н. Несмеянова РАН

С.Е.Любимов